Wednesday, December 30, 2009

Electricity in NH - Did restructuring cause higher prices in New England?

Seabrook Station Nuclear Power Plant - Seabrook, NH

With more snow coming and the faint hum of the oil burner in the background, it seems like a good time for a follow-up in my electricity restructuring series. Lately, there's been a growing concern that restructuring is not working and perhaps we should re-evaluate our current "simulated market competition" approach to electricity markets.

In Connecticut, some state officials want to return to the old regulated monopoly model. The justification is that electric rates in Connecticut are higher than nearly anywhere else in the country and they say that's proof that restructuring has failed. These officials point out that the lowest electricity prices are often found in states that still use the regulated monopoly model for electricity generation.

Correlation does not imply causation

In light of these assertions, I'm reminded of a favorite phrase of economists, scientists, and statisticians - Correlation does not imply causation. In other words, when two things are related, you can't just assume that one caused the other. Just because New England has high electricity rates and has restructured their electricity markets doesn't mean that restructuring caused the high rates.

In fact, in Connecticut, and in New England, electricity rates have long been higher than average rates in the rest of the country. Generally, the states where electricity restructuring took hold were the states with the highest rates to begin with. That makes sense since we New Englanders have a pretty strong "if it ain't broke, don't fix it" sensibility. If electricity rates in New England weren't broken, my guess is we'd have left well-enough alone.

It turns out that the main explanation for higher electricity rates in New England is that for lots of reasons, we decided to generate our power with more expensive fuels like nuclear, natural gas, and oil and we don't use as much cheap coal as other regions. In the US overall, inexpensive coal is used to generate almost half of all electricity, while in New England, it's used to produce only 12%. Nuclear, gas, and oil together produce almost 70% of electricity in New England, but only 40% nationally. Our focus on fuels such as nuclear and natural gas keeps our air cleaner, and may be necessary due to our region's resources, but it comes with a cost.

Power Generation by Fuel Source in the US (EIA Report, slide 20)

Connecticut legislators also have another beef with restructuring. They argue that ISO-NE's marginal-price-based bulk power markets cause ratepayers to overpay for electricity. They say that paying all generators the price that "clears the market" and matches up supply with demand gouges consumers and sends excess profits to lower-cost energy producers. There may be something to this concern, but the challenge is to find a solution that can correct the problem without introducing even greater inefficiencies.

Marginal pricing - it's just how free markets roll

Supply and demand intersect at market clearing price and quantity

Under marginal pricing, the market price for everyone is set by the last unit of a good that's needed and supplied in the market. All suppliers (power generators) are able to sell their output at that last or marginal price. If the cost of supplying the last unit is roughly the same as the cost of supplying all other units, this isn't a big deal. However, if the marginal cost of production (the cost to make each additional unit of output) is sharply increasing, producers who have lower costs get excess profit because they get to sell their inexpensively produced output at the market price set by the last unit produced. In electricity generation, low-cost coal based producers can get a bonus because the marginal price of electricity is usually set by more expensive natural gas generators. Under a regulated monopoly model, utilities could only recover their actual cost of generating the power needed, plus a fixed profit.

Although these inefficiencies can be real, in a free market system, most prices are set using marginal pricing. Marginal pricing is how the market figures out the price of a gallon of gasoline, the price of a home, and the price of a new TV. Sure, there are other approaches, but in reality, once you decide that a market-based pricing scheme isn't good enough, you're on the hook to out-design the market and that's usually tough to do. Reverting to the regulated monopoly cost-plus approach has its own inefficiencies. The question boils down to which "synthetic" market structure can achieve the best result.

Generating capacity - do you come from a land of plenty?

One important step in assuring that the cost of electricity is reasonable is to assure that there's enough generating capacity. Under perfect, free-market competition, there would be hundreds of firms entering and exiting the power generating market and the supply of generating capacity would naturally meet up with the demand. Unfortunately that didn't happen with power generation in the early days of restructuring, and some regions experienced serious electricity shortages as demand grew faster than supply.

Since the market didn't naturally build the needed capacity, regulators tweaked things by creating a system of "capacity payments" to encourage power generators to build and maintain enough capacity to serve the market's needs. That sounds reasonable, but as with much of restructuring, getting the incentives right has been tough. In practice, capacity payments aren't just paid to owners that build new plants, they're also paid to existing power plant owners. Many economists believe this is inefficient and raises prices more than is needed to assure adaquate capacity.

In the end, it's all about the risk

While it's vital for restructuring that regulators get the market mechanisms and incentives right, the more I learn, the more I become convinced that a huge part of the equation is understanding how risk is allocated, and how we'd like it to be allocated. Exactly how should the risks of a new coal scrubber, wind plant, or nuclear power plant be allocated? Who should pay if things don't turn out as planned? Who should profit if things go better than planned?

Advocates of the regulated monopoly approach suggest that because regulated utilities have a lower cost of capital, they can offer a less expensive model for power generation. IMO, this view is incorrect. Unlike merchant power generators, utility power plant owners are basically risk pass-through entities. They have lower financing costs because the risk of their capital projects is passed on to ratepayers. Sure, there are some benefits from the certainty of a captive consumer base, but most of those benefits can also be enjoyed by merchant generators using power purchase agreements to pre-sell their output. In the end, there's really no free-lunch in terms of cost-of-capital. The power plants that regulated utilities build are every bit as risky as those that merchant generators build. It's just a question of how the risk is allocated and who pays if things go bad.

It seems that trying to figure out if one regulatory scheme is better than another without delving into the risk model is like trying to decide if bonds are better than stocks by looking only at last month's returns. Unless you've uncovered what the risks are and who's on the hook for them, the pricing at any instant could be a mirage.

So, did restructuring cause higher electricity prices in New England? Personally, I don't think so. There have certainly been challenges in getting the market structure right, and these could have increased costs some. Still, I don't see any obvious signs of market failure either. To me the key in all this is to get the incentives and the risk sharing right.

Developing a robust electricity generation and delivery system that can meet our needs today and in the future involves taking risks. The ultimate question is this: How much risk do we, as electricity consumers want to transfer onto investors and how much are we willing to shoulder by ourselves? IMO, a purposeful allocation of risks and rewards should drive electricity market structure and getting that right will lead to the best outcome for consumers and for our economy.

Wednesday, December 23, 2009

Portsmouth based carbon capture firm completes pilot

Coal fired power plant in Bow, NH

I came across a recent report by SeacoastOnline about a company in Portsmouth called Powerspan that's doing some pretty cool work with carbon capture technology. Apparently, the firm just completed a pilot program on a 1 megawatt coal plant in Ohio that helped prove out their technology and lay the groundwork for a future commercial deployment.

Carbon capture is a technique that helps clean up the output from coal-fired power plants. In NH, PSNH is working on cleaning up emissions from our largest coal plant, Merrimack Station, but this effort will only remove mercury and sulfur dioxide, not carbon.

As I've mentioned before, for lots of reasons, coal is likely to be an important part of our energy mix for decades to come. Anything we can do to economically clean up the output from coal power plants is a good thing. It's neat that we've got a company right here in the seacoast of New Hampshire that's helping to solve this tough worldwide problem.

Although this is promising technology, Powerspan still has some big work ahead of them, especially in terms of economics. The firm's press release on the pilot indicates that using their technology will cost around $50 per ton of carbon removed from a coal plant's output. While this is apparently a breakthrough compared to competing carbon capture technologies, $50 per ton is still nothing to sneeze at.

Some very rough power generation costs (using $20 per ton for coal emissions)

For some perspective on that cost, consider the data in my power generation economics post from last July. In one of the later graphs, I priced carbon emissions at $20 per ton to show the impact of emissions on the economics of coal generation (see graph above). Generating a megawatt hour of power using coal can easily produce a ton of carbon emissions, so adding in a $50 per ton charge instead of $20 would significantly increase the cost of power from coal. In fact, adding $50 a ton for carbon capture would move coal's fuel and operating cost from 4.5 cents to 7.5 cents per kWh in the graph above. That could make coal uncompetitive versus other approaches.

Still, we shouldn't be too negative about the costs of carbon capture. The technology is still in its infancy and we're likely to see major breakthroughs along the way. Also, as long as we're subsidizing other emerging clean power generation technologies like wind and solar, it seems only right that carbon capture is included in the mix.

IMO, we should think of investing in power generation technology the way we think about personal investing. We should take a "portfolio" approach and diversify in order to minimize our risks and maximize opportunity. Even though wind and solar are showing great promise right now, we shouldn't put all our research eggs in one basket.

It's going to be a long haul to get to a cleaner energy future and I don't think anyone really knows what that future will look like. Personally, I'm glad to see these local folks working hard and smart to help us find the best way there.

Sunday, December 20, 2009

Portsmouth building boom slowed by credit crunch

Fallout from the credit crisis and financial meltdown of 2007-2008 is still all around us these days. Even with improving conditions, you can hardly read a newspaper or watch the news on TV without some mention of the crisis and its impact. Although many people and businesses have been financially impacted, physical signs of the crisis are just now starting to show up on our local landscape.

Construction of hotel in Portwalk project (map)

I was in Portsmouth the other day and I did a quick photo shoot of some of the development projects underway. I had done a similar tour earlier in the year and while some of the projects seem to be going along strong, others have been delayed or scaled back. Causation can be hard to pinpoint, but it's probably a safe bet that many of the delays in these projects are due to financing issues or concerns about the economy.

In downtown Portsmouth, the Portwalk project is still moving along, although the developer split the project into three phases and is only working on phase I currently. Phase I includes a 128 room Residence Inn by Marriott and 12,000 sq feet of retail space. Phases II and III include condos (or maybe apartments), more office and commercial space, and a parking garage but seems to be on hold indefinitely at this point.

Rendering of the proposed Portwalk project (

Parade Mall (Portwalk site) just before demolition (June 2009)

Parade Mall demolition (June 2009)

Shell of Residence Inn is nearly weather tight (Dec 2009)

View of Residence Inn from Maplewood and Deer (Dec 2009)

Rendering of Portwalk's Residence Inn from Hanover Street (

A Westin Hotel has also been approved across the street from the Portwalk project. The Westin project appeared ready to go, and the hotel was even listed on the Westin's website. However, there are no signs of construction and the hotel listing on the Westin website has been removed. There's no official word on the status of the project at this point.

Site of future Westin Hotel next to Deer Street in Portsmouth (map)

Also downtown, the Martingale Wharf project is just now coming out of a 9 month long stall. Work has recently started again on this 50,000 sq ft retail, commercial, and residential condo project on Bow Street after months of sitting idle.

Photo of Martingale Wharf project from across the river taken in June 2009 (map)

Photo from December shows little progress on the project since June

On the positive side, the project at the old Pier One Restaurant site (soon to be residential condos) appears to be moving along despite the tough economic conditions, as shown in the photo below.

Photo of work at the old Pier One Restaurant site at the end of State Street (map)

Finally, the City of Portsmouth project to relocate the waterfront deck at Poco's Restaurant and rehabilitate the public right-of-way seems to be coming along. With the construction of a new building at Martingale's Wharf, this area now offers the only riverfront view on this section of Bow Street.

View of small city park under construction behind Poco's Restaurant (map)

Additional links

Friday, December 18, 2009

Residential Sprinklers - What's a life worth these days?

... The cost-per-life-saved for residential sprinkler systems is estimated at between $2-$36 million (in US dollars) according to reports from New Zealand and Canada.

Cost per life saved in $ CAD (Canadian Housing Information Centre)

According to a recent WMUR-TV report, the New Hampshire State Building Code Review Board has voted to require sprinkler systems in new residential construction starting in 2012.

Most fire safety officials laud the use of sprinkler systems for their ability to save lives, reduce injuries to building occupants and firefighters, and reduce the costs of fire damage. There's not much debate about whether sprinkler systems save lives and reduce property damage. They do.

The debate comes in when officials try to figure out if the savings are enough to offset the estimated $1.00 to $1.50 per square foot that sprinklers will add to the cost of constructing a new home. With the average square footage of new construction in New England running at around 2200 square feet, sprinklers could easily mean a $2500 to $3000 increase in cost.

That's where the analysis starts to get interesting and the squeamish head for the exits. Just how much is a life worth anyway? People say you can't put a value on a human life, but I say heck, engineers and safety officials have to do it all the time. Vehicle designers, transportation system planners, and of course, medical professionals are all too familiar with this gruesome mortality math. To start, I found this encouraging table from the US Fire Administration that shows that NH has the lowest fire death rate in the country, at 4.6 deaths per year per million. Regardless of where you stand on the sprinkler issue, that's good news.

Next, I did some quick googling and the first sources on cost-per-life-saved for residential sprinkler systems that I found were outside the US. (I wonder if this says something about our collective squeamishness here in the US).

This report from New Zealand estimates the cost per life saved at around $2-$5 million dollars (I did a currency conversion from the numbers in the report). Another report from Canada put the cost per life at a whopping $36 million. Still another report from the UK puts the number at around $1 to $2 million. Finally, the only US report I could find in my quick google search, from the Pennsylvania builders Association, puts the cost at over $80 million per life saved. Obviously, there's plenty of room for fudging the numbers and some of the groups producing these estimates have a vested interest in inflating the numbers to avoid new regulations, but at least you can get an idea of the order of magnitude.

Soooo, What say you? Are you worth $2 million? or maybe $5? How about $80. Just some food for thought...

To be fair, advocates of these mandates point out that they not only save lives and reduce injuries, but they also can protect property by reducing the severity of fires. The economics might be a bit tenuous, but I can't really blame the folks that have to run into burning buildings for advocating for more fire-safety equipment. These regulations would almost certainly make the outcomes they witness in their day-to-day jobs a lot less horrific.

More Links: